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Abstract

Most population genetic theories on the evolution of sex or recombination are based on fairly restrictive assumptions about
the nature of the underlying fitness landscapes. Here we use computer simulations to study the evolution of sex on fitness
landscapes with different degrees of complexity and epistasis. We evaluate predictors of the evolution of sex, which are
derived from the conditions established in the population genetic literature for the evolution of sex on simpler fitness
landscapes. These predictors are based on quantities such as the variance of Hamming distance, mean fitness, additive
genetic variance, and epistasis. We show that for complex fitness landscapes all the predictors generally perform poorly.
Interestingly, while the simplest predictor, DVarHD, also suffers from a lack of accuracy, it turns out to be the most robust
across different types of fitness landscapes. DVarHD is based on the change in Hamming distance variance induced by
recombination and thus does not require individual fitness measurements. The presence of loci that are not under selection
can, however, severely diminish predictor accuracy. Our study thus highlights the difficulty of establishing reliable criteria
for the evolution of sex on complex fitness landscapes and illustrates the challenge for both theoretical and experimental
research on the origin and maintenance of sexual reproduction.
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Introduction

Sexual reproduction is widespread among multi-cellular organ-
isms [1]. However, the ubiquity of sex in the natural world is in
stark contrast to its perceived costs, such as the recombination load
[2] or the two-fold cost of producing males [3,4]. Given these
disadvantages it is puzzling that sexual reproduction has evolved
and is maintained so commonly in nature. The ‘‘paradox of sex’’
has been one of the central questions in evolutionary biology and a
large number of theories have been proposed to explain the
evolution and maintenance of sexual reproduction [5]. Currently,
the most prominent theories include (i) the Hill-Robertson effect
[6–8], (ii) Muller’s ratchet [9], (iii) the Red Queen hypothesis
[10,11], and (iv) the Mutational Deterministic hypothesis [12,13].
While originally described in various different ways, the underly-
ing benefit of sex can always be related to the role of
recombination in breaking up detrimental statistical associations
between alleles at different loci in the genome. What fundamen-
tally differentiates the theories is the proposed cause of these
statistical associations, assigned to either the interactions between
drift and selection (Fisher-Muller effect, Muller’s ratchet, and Hill-
Robertson effect) or gene interactions and epistatic effects (Red
Queen hypothesis and Mutational Deterministic hypothesis).
The present list of hypotheses is certainly not exhaustive, with

new ones continuously being proposed, complementing or
replacing the existing ones [14]. However, it is not new hypotheses
that are most needed, but the real-world evidence that allows us to

distinguish between them. The major question that still remains is
whether the assumptions and requirements of different theories are
fulfilled in the natural world. Accordingly, there has been
considerable effort to experimentally test these assumptions,
mainly for the epitasis-based theories (reviewed in [15–17]).
However, an even more basic and crucial problem underlies all
work on evolution of sex: how does one choose, measure, and
interpret appropriate population properties that relate to different
theories [17–19]. The difficulty stems from the often large divide
between the theoretical and experimental research: theories are
frequently formulated as mathematical models and rely on
simplistic fitness landscapes or small genome size (e.g. two locus,
two allele models) [13,20–25]. As a result, it may be unclear how a
property established based on these simplified assumptions relates
to actual properties of natural populations.
In this study we attempt to bridge the gap between the

theoretical and experimental work and to identify which
population measures are predictive of the evolution of sexual
reproduction by simulating the evolution of both sexual and
asexual populations on fitness landscapes with different degrees of
complexity and epistasis. The measures we use are the change of
mean fitness, of additive genetic variance, or of variance in
Hamming distance as well as four epistasis-based measures,
physiological, population, mean pairwise, and weighted mean
pairwise epistasis. While this certainly is not an exhaustive list, we
took care to include major quantities previously considered in
theoretical and experimental literature (e.g. [26–28]). With some
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exceptions [29–32], earlier work generally focused on the smooth,
single peaked landscapes, while here we also use random
landscapes and NK landscapes (random landscapes with tunable
ruggedness). Some studies of more complex rugged landscapes
tested whether they would select for sex but have not found a
simple and unique answer, even in models with only two-
dimensional epistasis [33,34]. A recent paper, which uniquely
combines experimental and theoretical approaches and simulates
evolution of sex on empirical landscapes, also finds that landscape
properties greatly affect the outcome of evolution, sometimes
selecting for but more often against sex [35]. However, what
specifically distinguishes our study is the goal of not only
determining when sex evolves but also of quantifying our ability
to detect and predict such outcome in scenarios where we know
how the evolution proceeds.
Whether the more complex landscapes we are using here are

indeed also more biologically realistic is open to debate as
currently little is known about the shape and the properties of real
fitness landscapes (for an exception see for example [35,36]). Our
goal is to move the research focus away from the simple landscapes
mostly investigated so far to landscapes with various higher
degrees of complexity and epistasis, and to probe our general

understanding of the evolution of sexual reproduction on more
complex fitness landscapes.
Notably, we find that some of the measures routinely used in the

evolution of sex literature perform poorly at predicting whether
sex evolves on complex landscapes. Moreover, we find that genetic
neutrality lowers the predictive power of those measures that are
typically robust across different landscapes types, but not of those
measures that perform well only on simple landscapes. The
difficulty of predicting sex even under the ideal conditions of
computer simulations, where in principle any detail of a
population can be measured with perfect accuracy, may be
somewhat sobering for experimentalists working on the evolution
of sex. We hope, however, that this study will evoke interest among
theoreticians to tackle the challenge and develop more reliable
predictors of sex that experimentalists can use to study the
evolution of sex in natural populations.

Results

Quality of predictors
We investigated the evolution of sex in simulations on three

types of fitness landscapes with varying complexity (smooth,
random and NK landscapes) and used seven population genetic
quantities (DVarHD, DVaradd, DMeanfit, Ephys, Epop, EMP, and EWP,
Table 1) as predictors of change in frequency of the recombination
allele (see Methods for more details). We calculated predictor
accuracy (the sum of true positives and true negatives divided by
the total number of tests) and used it to assess their quality on 110
smooth landscapes with varying selection coefficients and epistasis,
100 random landscapes, and 100 NK landscapes each for
K= 0,…,5. All landscapes are based on 6 biallelic loci and they
were generated such that an equal number of landscapes of each
type select for versus against sex in deterministic simulations with
infinite population size. Hence, random prediction by coin flipping
is expected to have an accuracy of 0.5.
Figure 1 shows the accuracy of the predictors for the different

landscape types. Increasing levels of blue indicate greater accuracy
of prediction. For the simulations with infinite population size
(deterministic simulations) we ran a single competition between
sexual and asexual populations to assess whether sex was selected
for. For simulations with finite population size (stochastic simula-
tions), we ran 100 simulations of the competition phase and assessed
whether the predictor accurately predicts the evolution of sex in the
majority of these simulations. Focusing on the top left panel we find
that for deterministic simulations most predictors are only highly
accurate in predicting evolutionary outcomes for the smooth
landscapes. The exception is the poor performance of DMeanfit,
which is not surprising, as theory has shown that for populations in

Author Summary

One of the biggest open questions in evolutionary biology
is why sexual reproduction is so common despite its
manifold costs. Many hypotheses have been proposed
that can potentially explain the emergence and mainte-
nance of sexual reproduction in nature, and currently the
biggest challenge in the field is assessing their plausibility.
Theoretical work has identified the conditions under which
sexual reproduction is expected. However, these condi-
tions were typically derived, making strongly simplifying
assumptions about the relationship between organisms’
genotype and fitness, known as the fitness landscape.
Building onto previous theoretical work, we here propose
different population properties that can be used to predict
when sex will be beneficial. We then use simulations across
a range of simple and complex fitness landscapes to test if
such predictors generate accurate predictions of evolu-
tionary outcomes. We find that one of the simplest
predictors, related to variation of genetic distance
between sequences, is also the most accurate one across
our simulations. However, stochastic effects occurring in
small populations compromise the accuracy of all predic-
tors. Our study both illustrates the limitations of various
predictors and suggests directions in which to search for
new, experimentally attainable predictors.

Table 1. Overview of predictors of the evolution of sex.

Predictor Brief description Sex evolves if

DVarHD Difference in variance of Hamming distance to the consensus sequence after full and before recombination DVarHD.0

DVaradd Difference in additive genetic variance after full and before recombination DVaradd.0

DMeanfit Difference in mean fitness after full and before recombination DMeanfit.0

Ephys Physiological epistasis characterizing fitness landscape Ephys,0

Epop Population epistasis characterizing epistatic interactions observed in population Epop,0

EMP Mean pairwise epistasis (from [28]) EMP,0

EWP Weighted mean pairwise epistasis (from [28]) EWP,0

doi:10.1371/journal.pcbi.1000510.t001
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mutation-selection balance DMeanfit is typically negative [2].
According to our use of DMeanfit as a predictor, it always predicts
no selection for sex when negative and thus is correct in 50% of
cases, due to the way the landscapes were constructed. For the NK0

landscapes, all predictors perform poorly, because such NK
landscapes have no epistasis by definition (see Methods). For
infinite population size, theory has established that in absence of
epistasis there is no selection for or against sex. Indeed, in our
simulations the increase or decrease in the frequency of sexual
individuals is generally so small (of order 10215 and smaller) that any
change in frequency can be attributed to issues of numerical
precision. Generally, the accuracy of most predictors is much
weaker for complex landscapes (NK and random landscapes) than
for the simpler, smooth landscapes. The predictors that have highest
accuracy across different landscape types are DVarHD and Epop.

Combining predictors
To test whether combinations of the predictors could increase

the accuracy of prediction of the evolution of sex we plot for each

landscape the value of the predictors DVarHD, DVaradd and
DMeanfit against each other and color code whether the number
of sexual individuals increased (red) or decreased (blue) during
deterministic competition phase (see Figure 2). If the blue and red
points are best separated by a vertical or a horizontal line, then we
conclude that little can be gained by combining two predictors. If,
however, the points can be separated by a different linear (or more
complex) function of the two predictors, then combining these
predictors would indeed lead to an improved prediction. Figure 2
shows the corresponding plots for the smooth, the random, and
the NK2 landscapes. For the smooth landscapes the criterion
DVarHD.0 or DVaradd.0 are both equally good in separating
cases where sex evolved from those where it did not. As already
shown in Figure 1, DVarHD is generally a more reliable predictor
of the evolution of sex than DVaradd in the more complex random
or NK landscapes. Epistasis-based theories suggest that the
selection for sex is related to a detrimental short-term effect
(reduction in mean fitness) and a possibly beneficial long-term
effect (increase in additive genetic variance) [28]. The plots of

Figure 1. Predictor accuracy for different landscape types. Panels correspond to simulations with different population size. Predictors with
absolute values smaller than 10215 were considered numerical artifacts and were instead assigned values of 21 or 1 at random. This was done in
particular for NK0 landscapes where epistasis is always 0 and thus selection for or against sex is absent in infinite populations. Such substitution is
appropriate, because all predictors rely on sign and not magnitude in predicting the outcome of the competition phase.
doi:10.1371/journal.pcbi.1000510.g001
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DVaradd against DMeanfit, however, do not indicate that combining
them would allow a more reliable prediction of the evolution of
sex. Generally, the plots show that blue and red points either tend
to overlap (in the more complex landscapes) or can be well
separated using horizontal or vertical lines (in the smooth
landscapes) such that combining predictors will not allow to
substantially increase the accuracy of prediction. This is also the
case for all other landscapes and all other pairwise combinations
of predictors (data not shown). It is possible that some of the effect
described in [28] and expected here are too small to be detected
with the level of replication in our study. However, as the level of
replication used in this computational study goes way beyond
what can be realistically achieved in experimental settings we
expect that these effects would also not be detected in
experimental studies.
We also used a linear and quadratic discriminant analysis to

construct functions to predict the outcome of competitions
between the two modes of reproduction. For these purposes, half
of the data set was used for training and the other half for testing of

the discriminant functions, and the procedure was repeated
separately for each of the three population sizes (1,000, 10,000,
and 100,000) and the deterministic case. In no case did these
methods improve the accuracy of predictions (data not shown).
While there certainly are other, potentially more sophisticated
techniques that could be used here, our analysis indicates that
there may not be much additional information in our metrics that
could be extracted and used to increase the accuracy of the
predictions.

Effects of population size
All predictors performed much worse for simulations with finite

population size (Figure 1), most likely because the selection
coefficient for sex is weak [19,20]. To further examine the effect of
finite population size on the evolution of sex on different landscape
types we analyzed 100 independent simulations of the competition
phase starting from the genotype frequencies obtained from the
burn-in phase on each landscape. Figure 3 shows the fraction of
cases in which the frequency of sexual individuals increased for

Figure 2. Correlations between predictors on different landscapes. We highlight the relationships among DVarHD, DVaradd, and DMeanfit on
smooth, random, and NK2 landscapes, in simulations with infinite population size. Each cross mark (+) represents a predictor value for a single
simulation. Red (blue) crosses indicate simulations in which the frequency of sexually reproducing individuals increased (decreased) in the
competition phase. For clarity of presentation, up to 5 outlier points were eliminated from random and NK2 landscapes. These outliers in predictor
values are typically characteristic of a small number of populations that did not reach the equilibrium genotype frequencies by the end of the burn-in
phase.
doi:10.1371/journal.pcbi.1000510.g002
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three population sizes (1,000, 10,000, and 100,000), plotted
separately for those landscapes in which frequency of the
recombination modifier increased or decreased in deterministic
simulations. For almost all landscapes the fraction of cases in
which sex evolves is close to 50%, indicating that selection for
sexual reproduction is indeed extremely weak, and can thus easily
be overwhelmed by stochastic effects (in contrast to simulations
with infinite populations where selection coefficients of any size
will always produce a consistent observable effect). As a
consequence, even for relatively large population sizes the
outcome of the competition between sexual and asexual
populations is largely determined by drift. Such weak selection
may in part due to the small number of loci used for these
simulations and stochastic simulations with larger genomes have
indeed been shown to result in stronger selection for or against sex
[37,38]. However, accurate deterministic simulations are compu-
tationally not feasible for large genome sizes, because of the need
to account for the frequency of all possible genotypes in
deterministic simulations (see Supporting Information (Text S1)
for more details).

According to the Hill-Robertson effect (HRE) [8,21] selection
for recombination or sex may be stronger in populations of limited
size, because in such populations the interplay between drift and
selection can generate negative linkage disequilibria, which in turn
select for increased sexual reproduction. The strength of HRE
vanishes for very small populations and for populations of infinite
size [21]. In an intermediate range of population sizes, the HRE
increases with increasing number of loci (as does the range of
population sizes in which the effect can be observed) [38] and for
large genome size it can be strong enough to override the effect of
weak epistasis [37]. In our simulations, however, HRE is weak, as
is evidenced by the fact that, in the NK0 landscape, which by
definition have no epistasis, the fraction of runs in which sex
evolves is only very marginally above 50% (Figure 3).
Our results indicate that for finite population size the predictors

generally perform poorly. Of course this does not imply that they
could not be better than a simple coin toss. However, the results
suggest that these predictors will likely be of limited use, as any
experiment will have difficulties to reach even the replicate
number that we have used to generate Figure 1.

Figure 3. Fraction of simulations in which sex evolved on different types of landscapes for finite population sizes. For each
population size and each landscape we performed 100 simulations. Each cross mark (+) represents the results for one particular landscape, offset
horizontally for visibility, calculated as the fraction of those 100 simulations in which sex increased in frequency for a given landscape. The top and
bottom row of panels corresponds to landscapes that select for sex versus asex in deterministic simulations. For each landscape type, mean and one
standard error of the mean are shown on the left side of the cross marks. In some cases, the standard error is too small to be visible on the plot and is
covered by the circle marking the mean value.
doi:10.1371/journal.pcbi.1000510.g003
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Effects of neutrality
We also examined additional fitness landscapes, characterized

by increased neutrality (for full details and figures see Text S1). We
found that the allelic diversity at neutral loci both decreases the
accuracy and generates a systematic bias in the previously best
performing predictors, Epop and DVarHD. In contrast, other
predictors investigated here, DVaradd, DMeanfit, Ephys, EMP, and
EWP are not affected by including neutral loci, but still have poor
accuracy of prediction on more complex fitness landscapes.

Discussion

Our computer simulations highlight the difficulties in predicting
whether the frequency of sexual individuals will increase in
populations evolving on complex fitness landscapes. The predic-
tors of the evolution of sex used here are derived from previous
studies on simpler landscapes and are based on standard
population genetic measures such as variance of Hamming
distance, mean fitness, additive genetic variance, physiological or
population epistasis, mean pairwise epistasis and weighted mean
pairwise epistasis. Not surprisingly, all predictors are highly
accurate on the simplest landscape type, the smooth landscapes,
in which log fitness is a monotonic, weakly curved function of the
Hamming distance to the fittest sequence. Interestingly, the
simplest measure, DVarHD, which is based on the change of
Hamming distance after versus before recombination, turns out to
be among the most robust predictors of the evolution of sex across
the range of fitness landscapes tested here (Figure 1). Notably,
DVarHD requires no fitness data, but only genetic information, and
should thus be easier to obtain experimentally, at least when
compared to the measures that require both information on the
mutations present and on their fitness effects. Intuitively, DVarHD

measures whether recombination has the effect of spreading out a
population or condensing it over the space of all possible
genotypes. Spreading out the population over genotype space
(i.e. increasing genetic variation) may increase phenotypic
variation, which in turn leads to more efficient selection on fitness
affecting loci and eventually to selection for sexual reproduction.
Another measure, population epistasis, Epop, turns out to be an
equally robust predictor of the evolution of sex. Epop may be more
convenient than Ephys in experimental studies because there is no
need to generate a large number of mutants for the analysis.
However, neither of these two predictors manages to attain a high
degree of accuracy on complex landscapes under stochastic
conditions. Using combinations of predictors also does not appear
to increase the overall ability to predict evolutionary outcome in
our simulations (Figure 2). Our results are in general agreement
with previous work on the evolution of sex on rugged and complex
landscapes [32–35]. For example, we had to generate many
landscapes before finding 50 of each type on which sex evolves,
with sometimes less than 1 in 10 landscapes promoting sex under
the deterministic scenario (data not shown.)
Finding such poor performance of all the predictors is a

somewhat sobering result. A possible criticism of our approach is
that we have focused in our simulations on small genomes in
mutation selection balance. In such a situation the selection for sex
is particularly weak and hence likely to be overwhelmed by
stochastic effects. An alternative scenario for which effects could be
stronger is that of populations in which a substantial fraction of
beneficial mutations have not yet gone to fixation [21].
Preliminary simulations of this alternative scenario suggest that,
under a narrow range of parameters (low mutation rate, single
mal-adapted founding genotype, large population size), sex indeed
evolves more frequently than in simulations starting from mutation

selection balance (data not shown). Generally, however, the quality
of the predictors does not substantially increase. More work is
needed to characterize and fully examine predictors in adapting
populations, highlighting these scenarios as interesting future
directions, but outside of the scope of the present study.
Our goal here was not to address all of the different theories on

evolution of sex and our simulations are certainly not well suited
for investigating the Red Queen hypothesis ([10] and for a recent
review see [39]) which is based on fluctuating selection or the
Fisher-Muller hypothesis [6,7,21] which is based on the effect of
beneficial mutations. To do so properly would require an entirely
new setup, including for example, changing fitness landscapes
and/or presence of parasitic individuals in case of the Red Queen
hypothesis and the continuous presence of novel beneficial
mutations in case of the Fisher-Muller hypothesis. Instead our
study focuses on those hypotheses for the evolution of sex/
recombination such as the Mutational Deterministic hypothesis
[12,13] or the Hill-Robertson effect [8,37] that work at mutation-
selection balance.

Conclusion
The central message of our study is that the prediction of the

evolution of sex is difficult for complex fitness landscapes, even in
the idealized world of computer simulations where in principle one
can measure any detail of a given population and fitness
landscape. Here we put the emphasis on predictors that are
experimentally measurable and are based on conditions for the
evolution of sex established in the population genetic literature
using simple fitness landscapes. We have however included EMP

and EWP, two predictors which would be more difficult to measure
experimentally, but are based on the most fundamental and
general theoretical treatment of the evolution of sex [28]. Of
course, while our choice of predictors, landscapes and selection
regimes is comprehensive, we are aware that it can never be
exhaustive or complete – there will always be other options to try
out and test. Future work will have to focus on identifying more
reliable predictors of the evolution of sex that can be used in
conjunction with experimental data. Additionally, a better
characterization of properties of natural fitness landscapes is badly
needed to improve our understanding of the forces selecting for
the evolution of sex. As it stands, DVarHD, our best candidate for a
predictor of the evolution of sex, has nevertheless important
shortcomings. In particular, it never reaches high levels of
accuracy on many of the landscapes. Still, DVarHD at least suggests
a potential direction for future research: a focus on predictors that
would take advantage of the rapidly increasing number of fully or
partially sequenced genomes and allow us to determine the
advantage of sex in large numbers of taxa, bringing us closer to
fully understanding the evolution of sex.

Materials and Methods

Fitness landscape types
Smooth landscapes. The log fitness wi of a genotype i is

given by wi~{anizbn2i , where ni is the Hamming distance from
the fittest genotype (i.e. the number of loci by which genotype i
differs from the fittest genotype). The parameters a and b
determine the slope and curvature of the logarithm of the fitness
function. A positive (negative) value of b corresponds to positive
(negative) epistasis. The parameter a is confined to positive values.
The maximal Hamming distance is given by the total number of
loci, N=6. To ensure that fitness decreases monotonically with
increasing Hamming distance we confined b to values between
2a/(2 N) and a/(2 N). We generated a set of 110 smooth
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landscapes by choosing 10 values of a equally spaced between 0.1
and 0.001 on log scale (a=102(1+2(i21)/9), for i=1,…,10) and 11
equally spaced values of b between 2a/(2 N) and a/(2 N). Thus
we have 50 pairs of smooth landscapes with corresponding levels
of positive and negative epistasis and 10 landscapes with no
epistasis. For populations of infinite size, landscapes with positive
epistasis are predicted to select against sex and landscapes with
negative epistasis select for sex [28], which our simulations
confirmed.

Random landscapes. For random landscapes the fitness
values of all genotypes are random numbers independently drawn
from uniform distribution on [0, 1] interval. Due to such
construction, random landscapes are maximally epistatic in the
sense that the fitness is not determined by contributions of
individual loci, but depends entirely on the combination of the
alleles at all loci. However, in contrast to the smooth landscapes,
we do not directly set the particular epistatic values for the random
landscapes. Another way of characterizing random landscapes
would be to point to the complete lack of heritability – the fitness
of a mutant progeny is entirely independent of the parental fitness.
We generated 100 random landscapes with 50 each selecting for
or against sex, based on whether sexual individuals outcompete
asexual ones in simulations with infinite population size.

NK landscapes. NK landscapes are random landscapes of
tunable ruggedness, first introduced by and described in detail by
Kauffman [40]. In brief, N denotes the total number of loci that
define the landscape and K denotes the number of loci with which
each locus interacts. The fitness of a genotype is determined as
follows: For each locus we randomly choose a set of K other loci
(K#N21). Then, for each locus, we generate a look-up table that
assigns a random number drawn uniformly between 0 and 1 to
each of the 2K+1 possible combinations of alleles at the K
interacting loci and the focal locus. To obtain the fitness of a
given genotype we multiply the fitness contributions from each
locus, determined form the corresponding look-up tables, and
scale the result so that the fittest genotype has fitness one.
Landscapes with K=0 (NK0), are single peaked and free of
epistasis. In contrast, the landscapes with K=N21 (NKN21) are
highly epistatic, multi-peaked random landscapes, where the
fitness of each genotype is the product of N uniformly distributed
random numbers. (Note that commonly in NK landscapes the
fitness is defined as the sum rather than the product of the
contributions of all loci. We deviate from the common definition to
ensure that NK0 landscapes have no epistasis on a multiplicative
scale). For each value of K we generated 100 landscapes, 50
selecting for and 50 against sex, based on whether sexual
individuals outcompete asexual ones in populations of infinite size.

Simulations
All simulations of the evolution of a haploid population on a given

fitness landscape are divided into a ‘‘burn-in’’ and a ‘‘competition’’
phase. In the burn-in phase an asexually reproducing population is
allowed to equilibrate on the landscape starting from random initial
genotype frequencies. In the competition phase we determine
whether the frequency of an allele coding for increased recombi-
nation increases in the population.
The burn-in phase consists of repeated cycles of mutation and

selection. Genotype frequencies after selection are given by the
product of their frequency and relative fitness before selection. In
all simulations mutations occur independently at each locus with a
mutation rate m=0.01 per replication cycle. This high mutation
rate was chosen in order to obtain sufficient levels of genetic
diversity. However, we also tested mutation rates up to 10 times

lower and found no qualitative differences in the results (data not
shown).
In the competition phase the population undergoes recombi-

nation in addition to mutation and selection in each reproduction
cycle. To this end a recombination modifier locus is added to one
end of the genome, with two alleles m and M, each present in
exactly half of the population. Recombination between two
genotypes depends on the modifier allele in both genotypes, with
the corresponding recombination rates denoted by rmm, rmM, and
rMM. For the simulations discussed in the main text we used
rmm= rmM=0 and rMM=0.1. For this parameter choice individuals
carrying distinct modifier alleles cannot exchange genetic material
and thus any effect of increased recombination remains linked to
the M allele. Sexual and asexual individuals compete directly with
each other, and we refer to this scenario as the evolution of sex. In
contrast, if rmm,rmM,rMM, then genetic material can be
exchanged between all individuals. We refer to this scenario as
the evolution of recombination. For the sake of simplicity, we
primarily consider the evolution of sex in the main text, but
analogous simulations of the evolution of recombination scenario
led to qualitatively indistinguishable results (Text S1). Moreover,
for the evolution of sex scenario we also tested values of rMM

ranging from 0.01 to 0.3 (data not shown), which produced
qualitatively indistinguishable results. All recombination values
refer to a probability of recombination happening between
neighboring loci with one recombination event per genome. The
position of the crossover point is chosen randomly. No mutations
occur between m and M alleles at the modifier locus.
Recombination, mutation and selection as described above are

deterministic and are calculated assuming infinite population size.
To examine stochastic effects, we also considered populations with
1,000, 10,000, and 100,000 individuals. Those simulations
included a step in which the frequencies of genotypes are sampled
from a multinomial distribution according to their frequencies as
calculated based on infinite population size.
The burn-in phase always consists of 2500 generations of

mutation and selection. We confirmed that 2500 generations were
typically sufficient for the system to go into mutation-selection
balance from random initial genotype frequencies (data not
shown). The competition phase consists of 250 generations of
recombination, mutation and selection. For infinite population size
we ran a single competition phase for each burn-in phase. For
finite-size populations, the outcome was estimated as the average
of 100 simulations of the competition phase.

Predictors for evolution of sex
The difference in variance of Hamming distance after full

and before recombination, DVarHD. To compute DVarHD we
first determine the consensus sequence at the end of the burn-in
phase. Next, we compute the variance of the Hamming distances
between all sequences and the consensus sequence (i.e. the
variance of the number of mutations by which the sequences
differ from the consensus sequence). We then compute the
variance of Hamming distance after full recombination but
before selection. The frequency of any sequence after full
recombination is given by the product of the frequencies of its
constituent alleles. (When finite population sizes were considered,
we create the population after recombination by sampling from
the corresponding multinomial distribution.) Full recombination is
equivalent to performing recombination with r=1 between all
adjacent loci and it completely destroys any linkage
disequilibrium. Note that the consensus sequences before and
after recombination are identical, because recombination does not
change the allele frequencies. Finally, we obtain DVarHD as the
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difference of the Hamming distance variances in the populations
after full recombination and before recombination. Intuitively,
DVarHD assesses whether recombination makes a population
spread out or become more compact over the space of all
possible genotypes. A positive DVarHD may be indicative of an
increase in fitness variance and could thus lead to more efficient
selection. Mathematically, it can be shown that 2DVarHD equals
the sum of all pairwise linkage disequilibria with reference to the
consensus sequence (Text S1), so we do not consider a separate
predictor directly based on linkage disequilibrium measurements.
The epistasis-based and the drift-based theories of evolution of sex
suggest that negative linkage disequilibrium is a necessary but not
sufficient criterion for the evolution of sex [17,41]. Thus, we
expect sex to evolve in our simulation whenever DVarHD.0.

The difference of additive genetic variance after full and
before recombination, DVaradd. We compute the additive
genetic variance by fitting log fitness to a linear model that
includes only main effects (i.e. the effects of individual loci) but no
interactions (i.e. effects that result from combinations of alleles at
several loci). We then determine the model parameters c0 and cj
such that

M~
X2N

i~1

fi(c0z
XN

j~1

xijcj{wi)
2

is minimized. Here fi is the frequency of genotype i in the
population, wi is its log fitness, xij are binary variables that code for
the presence of allele 0 or 1 at locus j, c0 is the estimate of the
intercept (i.e. the estimated log fitness of the genotype with allele 0
at all loci), cj is the estimated effects of allele 1 at locus j, and N is
the number of loci. The additive genetic variance is then
determined as the total variance of log fitness that can be
explained by the linear model (i.e. we compute an estimate of the
log fitness for all genotypes in the population based on the
parameters c0 and cj and then calculate the variance among these
estimated fitness values). This procedure is repeated also for the
genotypes that are obtained after full recombination. Finally,
DVaradd is given by the difference in the additive genetic variance in
the population after full recombination and at the end of the burn-
in phase. Epistasis-based theories suggest that sex is advantageous
because it may increase the additive genetic variance and thus lead
to more efficient selection, which is frequently referred to as the
long-term advantage of sex [28]. Thus, we expect DVaradd to be
positive in simulations where sex is favored. We also examined
total variance in fitness, but results were qualitatively
indistinguishable (data not shown).

The difference of mean fitness of the population after full
and before recombination, DMeanfit. We compute DMeanfit
on the basis of the genotype frequencies at the end of the burn-in
phase as the difference in mean fitness after full and before
recombination. In populations that are in mutation-selection
balance, recombination reduces mean fitness [2] (except in the
narrow range for which epistasis measure on a multiplicative and
additive scale has different signs). Consequently, we expect
DMeanfit to be smaller than zero in simulations with infinite
population size. However, in simulations with finite population
size, due to stochastic effects, DMeanfit need not always be negative.
Epistasis-based theories have established that the selection on a
recombination modifier stems from a long-term and a short-term
effect of recombination [28]. As explained above, the long-term
effect relates to the effect of recombination on the additive genetic
variance. The short-term effect relates to the effect of
recombination on mean fitness and is generally detrimental for

populations in mutation-selection balance [2,28]. The theory
shows that a recombination modifier can be selected for, provided
the beneficial long-term effect outweighs the detrimental short
term effect [28]. Thus, in our simulations, we expect selection for
sex whenever DMeanfit is positive.

The strength of physiological epistasis, Ephys. We
compute Ephys by first determining the fittest sequence that is
present in the population at the end of the burn-in phase. For all
possible genotypes (including genotypes that are not present in the
population at the end of the burn-in phase) we then measure their
Hamming distance to the fittest sequence in the population and
regress log fitness w against Hamming distance d for all genotypes
according to w(n)= an+bn2, where Hamming distance n is
measured relative to the fittest sequence. The parameter b
estimates the curvature of the fitness function and is commonly
used as a measure of epistasis in experimental work [17,42–48].
Here we use it as the estimate of Ephys. Using the consensus
sequence instead of the fittest sequence as the reference did not
affect the results qualitatively (data not shown). According to the
epitasis-based theories, we expect that in our simulations sex
evolves whenever Ephys is negative [2,28].

The strength of population epistasis, Epop. Epop differs
from Ephys in that this measure is based only on those genotypes
that are actually present in the population. Population epistasis is
again estimated by regressing log fitness against Hamming
distance, but this time only including genotypes that are present
in the population, taking into account their relative frequencies.
Population epistasis thus quantifies the epistasis that is actually
present in population, whereas physiological epistasis measures the
epistasis that characterizes the fitness landscape. Epistasis-based
theories do not make a clear distinction between population and
physiological epistasis, because the assumed parameters (such as
the fitness landscape, mutation rate, and population size) fully
determine the outcome. However, it is straightforward to construct
examples of fitness landscapes in which measures of population
and physiological landscapes have opposite sign [17,19]. Here we
expect sex to evolve whenever Epop,0. As the selection for sex
depends on those epistatic interactions that are present in the
population we expect Epop to be a better predictor than Ephys.

Predictors based on pairwise epistasis. We measure two
predictors that are based on the equations from the Barton’s classic
paper on evolution of sex [28]. In particular, we consider two ways
to combine pairwise measures of epistasis between genes into a
single numerical predictor. Based on Equation 12 in [28], if
higher-order (than pairwise) interactions are neglected, the change
in frequency of a recombination modifier can be approximated
according as

Dpi&{
X

jvk

drjkji
piqipjqjpkqk

rjkrijk
ajak

1

rij
z

1

rik
{1

! "
zejk

# $
ejk:

Here, the index i denotes the modifier and the sum goes over the
selected loci j and k. The selection coefficients aj and epistatic
interactions ejk need to be calculated from fitness values and

genotype frequencies according to the definitions in [49] and [28].
For the special case of a completely linked modifier (i.e. rij = rik = 0),
on which we focus in our paper, the above expression for the
change in modifier frequency is dominated by the long-term
effects and becomes proportional to

{
X

jvk

drjkji
pjqjpkqk
rjkrijk

ajakejk:
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As it is in general quite difficult to obtain experimental data on the

location of the modifier and on the rates of recombination between

individual loci, we assume that predictors have to be derived in the

absence of that knowledge. Hence, the best experimentally feasible

predictor that can be derived from the above formula reads

EWP~{
X

jvk

pjqjpkqkajakejk,

and corresponds to the weighted mean of the epistatic effects. A

simplified and frequently used version of this predictor is the (non-

weighted) mean of the epistatic effects

EMP~{
X

jvk

ejk:

Here we will consider both mean pairwise epistasis (EMP) and
weighted mean pairwise epistasis (EWP) as predictors for the
direction of the selection on a modifier of recombination.

Supporting Information

Text S1 Details of the study’s computational aspects; additional
experiments for a different modifier value combination; experi-
ments with neutral loci; analytical derivation of the relationship
between the variance of Hamming distance and linkage
disequilibria in the 2-loci case.
Found at: doi:10.1371/journal.pcbi.1000510.s001 (0.35 MB
DOC)
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